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1 Introduction
The sequential optimality conditions, for example,
Approximate-Karush-Kuhn-Tucker (AKKT ) condi-
tion [17] needs the existence of a sequence {xk},
which is converging to some x∗ with the condition
that xk is a Karush-Kuhn-Tucker (KKT ) point for
every natural number k, also there should be an ap-
propriate sequence of Lagrange multipliers with the
property that gradient of the Lagrangian function at
xk converges to zero.

The KKT conditions [12] play a vital role
to solve nonlinear optimization problems, both for
scalar optimization and for multiobjective optimiza-
tion problems. Numerically, the optimality conditions
based on the sequence of iterands, which is known as
sequential optimality conditions, do not need any con-
straint qualification [14].

Lions and Stampacchia [13] introduced the con-
cept of variational inequality problem. Further, Gian-
nessi [7] introduced the concept of vector variational
inequalities. Variational inequalities and vector vari-
ational inequalities play an important role in deriv-
ing necessary and sufficient optimality conditions for
scalar and vector optimization problems. Mastroeni
[11] established relationship between KKT condi-
tions and variational and vector variational inequali-
ties. Further, Haeser and Schuverdt [10] established
the relationship between sequential optimality condi-
tions and variational inequalities. Haeser and Schu-
verdt [10] introduced necessary AKKT condition
for a solution to the continuous variational inequality

problem. Recently, Giorgi et al. [9] generalized the
sequential optimality conditions from scalar optimiza-
tion problem to multiobjective optimization problem.
Further, Giorgi et al. [9] showed that these AKKT
conditions are necessary for a point to be a weak effi-
cient solution and sufficient under some convexity and
affinity assumptions.

The real world optimization problems associate
some uncertain data due to measurement errors. Two
optimization models came into existence to handle
with the uncertain data. First is robust optimization
and second one is interval valued optimization [6].
Interval analysis [5] as well as interval valued Opti-
mization are the growing branch of mathematics in
this computer age with the effect of rounding errors
due to uncertain data. Wu [2] established relationship
betweenKKT optimality conditions and interval val-
ued objective functions. Wu [4] derived Wolfe dual-
ity results for interval valued optimization problems.
Further, Wu [3] studied KKT optimality conditions
in multiobjective programming problems with inter-
val valued objective function.

Recently, Laha and Mishra [18] established some
results in vector optimization problems and vector
variational inequalities involving locally Lipschitz
functions.

In this paper, we introduce Approximate KKT
optimality conditions for multiobjective interval val-
ued objective function as a generalization of KKT
optimality conditions. The multiobjective function is
associated with the vector variational inequality prob-
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lem. In addition to that, we establish relationship be-
tween vector variational inequality problems and mul-
tiobjective interval valued Optimization problems un-
der the assumption of LU−convex smooth and nons-
mooth objective functions.

Motivated by the work of Wu [3], Andreani et al.
[16], Haeser and Schuverdt [10], Mastroeni [11] and
Giorgi et al. [9], we introduce Approximate-Karush-
Kuhn-Tucker optimality conditions for interval val-
ued objective function and discuss the sufficiency of
AKKT conditions for the interval valued problems
and generalize its definition to the structure of vector
variational inequality problems.

The organization of this paper is as follows: In
Section 2, we collected some basic definitions and re-
sults. In Section 3, we develop sequential optimality
conditions as AKKT conditions for interval valued
vector variational inequality problem and proved suf-
ficiency with LU−convex and affine conditions.

2 Preliminaries
2.1 Interval Analysis
We collect some basic concepts and essential defini-
tions related to interval valued functions.
We denote by I the class of all closed intervals in
R. Let U = [uL, uU ], where uL and uU denotes
the lower and upper bounds of U, respectively. Let
U = [uL, uU ] and V = [vL, vU ] be in I, then, we
have

(i) U + V = {u + v : u ∈ U, v ∈ V } = [uL +
vL, uU + vU ],

(ii) −U = {−u : u ∈ U} = [−uU ,−uL],

(iii) U − V = U + (−V ) = [uL − vU , uU − vL],

(iv) tU = {tu : u ∈ U} ={
[tuL, tuU ] if t ≥ 0
[tuU , tuL] for t < 0

where t is a real number.

we refer to Moore [5], for further details on interval
analysis .
Suppose that U ⊆ Rn and V ⊆ Rn, then the Haus-
dorff metric between U and V is denoted and defined
by

dH(U, V ) = max
{

sup
u∈U

inf
v∈V
‖u−v‖, sup

v∈V
inf
u∈U
‖u−v‖

}
,

where ‖.‖ is an Euclidean norm.
Let U = [uL, uU ] and B = [vL, vU ] be two closed
intervals, then it is easy to prove that

dH(U, V ) = max{|uL − vL|, |uU − vU |}.

Let {Un = [uLn , u
U
n ]} and U be closed intervals in R,

then the sequence of closed interval {Un} converges
to U, if for every ε > 0, there exists N > 0 such that,
for n > N, we have dH(Un, U) < ε. Wu [2] proved
that

lim
n→∞

Un = U if and only if lim
n→∞

uLn = uL and

lim
n→∞

uUn = uU .

The function φ : Rn → I is called interval val-
ued function, this means φ(x) = φ(x1, · · · , xn) is
a closed interval in R for each x ∈ Rn. φ can be
written as φ(x) = [φL(x), φU (x)], where φL and φU
are two real valued functions defined on Rn such that
φL(x) ≤ φU (x), ∀x ∈ Rn.
Wu [2] discussed limit and continuity of interval val-
ued functions. Let φ be an interval valued function
defined on Rn and U = [uL, uU ] be an interval in R,
we say

lim
x→a

φ(x) = U, if and only if lim
x→a

φL(x) = uL and

lim
x→a

φU (x) = uU .

The interval valued function f defined on Rn is said
to be continuous at a ∈ Rn if

lim
x→a

φ(x) = φ(a).

Proposition 2.1 [3] Suppose φ is an interval valued
function defined on Rn, then φ is continuous at a ∈
Rn if and only if φL and φU are continuous at a.

Definition 2.1 [3] SupposeK is an open set in R The
interval valued function φ : K → I with φ(x) =
[φL(x), φU (x)] is called weakly differentiable at x0 if
the real valued functions φL and φU are differentiable
at x0 (in the ordinary sense).

For U, V ∈ I, if there exists a W ∈ I such that U =
V + W, then W is called the Hukuhara difference of
U and V . Also, W can be written as W = U 	 V,
considering the Hukuhara difference W exists, which
means that uL − vL ≤ uU − vU and W = [uL −
vL, uU − vU ].

Proposition 2.2 [3] Suppose U = [uL, uU ] and V =
[vL, vU ] are two closed intervals in R. If uL − vL ≤
uU − vU , then the Hukuhara difference W exists and
W = [uL − vL, uU − vU ].

Definition 2.2 [3] Suppose K is an open set in R.
The interval valued function φ : K → I is called
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H−differentiable at x0 if there exists a closed interval
U(x0) ∈ I such that the limits

lim
h→0+

φ(x0 + h)	 φ(x0)

h
and

lim
h→0+

φ(x0)	 φ(x0 − h)

h

both exist and equal to U(x0), which is called theH−
derivative of φ at x0.

2.2 Solution Concepts
Suppose U = [uL, uU ] and V = [vL, vU ] are two
closed intervals in R. We write U �LU V if and only
if uL ≤ vL and uU ≤ vU .
Consider multiobjective programming problem with
multiple interval valued objective functions

(MIV P ) minφ(x) = (φ1(x), · · · , φp(x))

subject to x = (x1, · · · , xn) ∈ K ⊆ Rn,

where each
φk(x) = [φLk (x), φUk (x)] is an interval valued func-
tion for k = 1, · · · , p.
We write U ≺LU V if and only if U �LU V and
U 6= V. We say U = (U1, · · · , Up) is an inter-
val valued vector if each component Uk = [uLk , u

U
k ]

is closed interval for k = 1, · · · , p. Suppose U =
(U1, · · · , Up) and V = (V1, · · · , Vp) be two interval
valued vectors. We write U �LU V if and only if
Uk �LU Vk ∀k = 1, · · · , p, and U ≺LU V if and
only if Uk �LU Vk, ∀k = 1, · · · , p and Uq ≺LU Vq
for at least one q. Suppose x∗ is a feasible solution
of (MIV P ), then φ(x∗) is an interval valued vector.
The concepts of Pareto optimal (efficient) solution is
given below.

Definition 2.3 [2] Suppose x0 is a feasible solution
to the problem (MIV P ).

(i) x0 is said to be an efficient solution to the prob-
lem (MIV P ) if there exists no x̄ such that
φ(x̄) ≺LU φ(x0).

(ii) x0 is said to be a strong efficient solution to the
problem (MIV P ) if there exists no x̄ such that
φ(x̄) �LU φ(x0).

(iii) x0 is said to be a weak efficient solution to the
problem (MIV P ) if there exists no x̄ such that
φk(x̄) ≺LU φk(x0) ∀k = 1, · · · , p.

Definition 2.4 [2] Suppose x0 is feasible solution of
the problem (MIV P ). x0 is said to be local weak effi-
cient solution of the problem (MIV P ), if there exists

a neighborhood N of x0 such that for all x̄ ∈ K ∩N,
then the following cannot satisfy for any k = 1, · · · , p

φk(x̄) ≺LU φk(x0).

Zhang et al. [19] defined the concepts of local quasi
efficient and local weak quasi efficient solutions for
the problem (MIV P ).

Definition 2.5 Suppose x0 is feasible solution of the
problem (MIV P ). x0 is said to be local quasi effi-
cient solution of the problem (MIV P ), if there exist
β ∈ int(Rp+) and a neighborhood N of x0 such that
for all x̄ ∈ K ∩N, then the following cannot satisfy

φ(x̄) + β‖x̄− x0‖ ≺LU φ(x0).

Definition 2.6 Suppose x0 is feasible solution of the
problem (MIV P ). x0 is said to be local weak quasi
efficient solution of the problem (MIV P ), if there ex-
ist βk ∈ int(Rp+) and a neighborhood N of x0 such
that for all x̄ ∈ K ∩ N, then the following cannot
satisfy k = 1, · · · , p

φk(x̄) + βk‖x̄− x0‖ ≺LU φk(x0).

2.3 Optimization Problems
We recall some basic and essential definitions. The
open (closed) ball with center at y0 ∈ Rn with radius
δ > 0 is denoted by B(y0, δ) ( B̄(y0, δ)). We denote
Rn+ as the non-negative orthant of Rn. We also denote
c+ = max{0, c}, c2+ = (c+)2, where c ∈ R. The
notation ‖·‖ is the Euclidean norm of Rn. For y, z ∈
Rn, y ≤ z iff yi ≤ zi, for i = 1, ..., n; y < z, yi < zi,
for i = 1, ..., n.

Let K be real Banach Space with a norm ‖.‖ and
K∗ be its dual space with a norm ‖ · ‖∗. Let X be a
non-empty open convex subset of K, F : K → 2K

∗

be a set-valued mapping from real Banach space to
the family of non-empty subsets of K∗. The follow-
ing definitions and results are extracted from [8, 1] to
resolve difficulties during the derivation of upcoming
results.

Definition 2.7 (Generalized directional derivative)
Suppose φ is a locally Lipschitz function at a given
point a ∈ K and b be any other vector in K. Gener-
alized directional derivative of φ at a in the direction
of b, denoted by φ0(a; b), is defined by

φ0(a; b) = lim sup
y→a, t↓0

φ(y + tb)− φ(y)

t
.

Definition 2.8 (Clarke’s generalized subdifferential)
Suppose φ is a locally Lipschitz function at a given
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point a ∈ K and b be any other vector in K. The
Clarke’s generalized subdifferential of φ at a, denoted
by ∂cφ(a), is defined by

∂cφ(a) = {ξ ∈ K∗ : φ0(a; b) ≥ 〈ξ, b〉,∀b ∈ K}.

Next, we gather some properties related to Clarke’s
generalized subdifferential which can be found in [8].

Proposition 2.3 Let φ : Rn → R be locally Lipschitz
at x with constant L. Then

1. ∂cφ(x) is a nonempty, convex and compact set
such that ∂cφ(x) ⊂ B(0;L),

2. φ0(x, v) = max{〈v, ξ〉|ξ ∈ ∂cφ(x)} ∀v ∈ Rn,

3. the map ∂cφ(·) : Rn → P(Rn) is upper semi-
continuous, where P(Rn) denotes the power set
of Rn,

4. if φ is differentiable at x, then∇φ(x) ∈ ∂cφ(x),

5. if φ attains its extremum at x, then 0 ∈ ∂cφ(x).

Proposition 2.4 Let the functions φi : Rn → R be
locally Lipschitz at x for i = 1, 2, ..., k, then for λi ∈
R

∂c
( k∑
i=1

λiφi

)
(x) ⊂

k∑
i=1

λi∂
cφi(x).

Proposition 2.5 If φ1 and φ2 are locally Lipschitz at
x ∈ Rn, then the function φ1φ2 is locally Lipschitz at
x and

∂c(φ1φ2)(x) ⊂ ∂cφ1(x)φ2(x) + φ1(x)∂cφ2(x).

2.4 Approximate-Karush-Kuhn-Tucker con-
ditions (AKKT ) [17]

We consider the nonlinear constrained optimization
problems (OP ).

(OP) Minimize φ(x) subject to

x ∈ P = {x ∈ Rn : g(x) ≤ 0, h(x) = 0}, (1)

where φ : Rn → R, g : Rn → Rm, h : Rn → Rr are
smooth functions. We say a feasible point x0 satis-
fies (AKKT ) conditions, if there exists a sequences
(µk, τk) ⊂ Rm+ × Rr, {xk} ⊂ Rn converging to x0
and satisfies the following:

lim
k→∞

‖∇φ(xk) +
m∑
j=1

µkj∇gj(xk)

+

r∑
l=1

τkl ∇hl(xk)‖ = 0,

gj(x
∗) < 0 =⇒ µkj = 0 for sufficiently large k,

j = 1, ...,m. (2)

Let P be non-empty and convex subset of Rn and
F : Rn → Rn be a continuous map, then variational
inequality (VI) problem [13] is stated as follows:

V I(F, P ) find y0 ∈ P,
such that 〈F (y0), y − y0〉 ≥ 0, ∀y ∈ P.

Wu [2] established the Karush-Kuhn-Tucker (KKT )
optimality conditions for interval valued optimization
problem.

(IV OP ) minφ(x) = [φL(x), φU (x)]

subject to gi(x) ≤ 0, i = 1, 2, · · · ,m.
Let P = {x ∈ Rn : gi(x) ≤ 0, i = 1, 2, · · · ,m}
be a feasible region of problem (IV OP ) and a point
x̄ ∈ P. We say that the real valued function gi, i =
1, 2, · · · ,m satisfy the KKT conditions at x0 if gi
are convex on Rn and continuously differentiable at
x0 ∀i = 1, 2, · · · ,m. The KKT optimality condi-
tions for problem (IV OP ) is given as follows.

Theorem 2.1 Let gi, i = 1, 2, · · · ,m be the real val-
ued constraint functions which satisfy the KKT con-
ditions at x0 and the interval valued objective function
φ : Rn → I is LU−convex and weakly continuously
differentiable at x0, if there exist Lagrange multipliers
0 < λL, λU ∈ R and 0 ≤ µj ∈ R, j = 1, 2, · · · ,m,
such that

(i) λL∇φL(x0) + λU∇φU (x0) +
m∑
j=1

µj∇gj(x0) =

0;

(ii) µjgj(x0) = 0, ∀j = 1, 2, · · · ,m,
then x0 is a Pareto optimal solution of problem
(IV OP ).

The vector variational inequality problem for interval
valued function is given in Zhang et al. [19]:
(V V IP ) Find a point x0 ∈ P such that there exist no
x ∈ P such that(
〈∇φL1 (x0) +∇φU1 (x0), x− x0〉, · · · ,

〈∇φLp (x0) +∇φUp (x0), x− x0〉
)T
≤ 0.

3 Approximate KKT conditions and
Vector Variational Inequalities

We consider following vector optimization problem
with interval valued objective functions.

(VVI-IVOP) Minimize 〈F (x0), x〉,
where 〈F (x0), x〉 = (〈F1(x

0), x〉, ..., 〈Fp(x0), x〉),
subject to x ∈ P,
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where each Fk(x0) = [FLk (x0), FUk (x0)] is an inter-
val valued function for k = 1, 2, · · · , p and feasible
set P is subset of Rn.
A point x0 ∈ P is an efficient solution of V V I −
IV OP if and only if there exists no x ∈ P such
that F (x) ≤ F (x0), F (x) 6= F (x0). The set of
all efficient solution of V V I − IV OP is denoted by
Min(F, P ).

We establish the Approximate-Karush-Kuhn-
Tucker necessary and sufficient optimality conditions
for vector variational inequality problems.

Definition 3.1 (AKKT−V V I−IV OP Conditions)
The Approximate-Karush-Kuhn-Tucker conditions are
satisfied for V V I−IV OP at a feasible point x0 ∈ P
if and only if there exist sequences (xk) ⊂ Rn and
(λL,k, λU,kµk, τk) ⊂ Rp+×Rp+×Rm+ ×Rr, such that

(A1) xk → x0,

(A2)
p∑
i=1

λL,ki FLi (xk) +
p∑
i=1

λL,ki FUi (xk) +

m∑
j=1

µkj∇gj(xk) +
r∑
l=1

τkl ∇hl(xk)→ 0,

p∑
i=1

λL,ki +
p∑
i=1

λU,ki = 1,

(A3) gj(x0) < 0 =⇒ µkj = 0, for sufficiently large
k, j = 1, 2, · · · ,m.

The points satisfying AKKT − V V I − IV OP con-
ditions are called AKKT − V V I points. Note that
the sequence xk is not necessarily in feasible set. we
scalarize the following nonsmooth function to estab-
lish necessary optimality conditions for the problem
V V I − IV OP,:

F : Rp → R, defined by F(y) = max{yi},

clearly F(y) ≤ 0⇔ y ≤ 0 and F(y) < 0⇔ y < 0.
We presented a lemma motivated by result from
Giorgi et al. [9]:

Lemma 3.1 If x0 is solution of interval valued
V V I(F, P ), then x0 is solution of Min(F(F (.) −
F (x0)), P ).

Proof: Suppose x0 is solution of V V I−IV OP , then
there exist no x such that(
〈FL1 (x0) + FU1 (x0), x〉, · · ·

〈FLp (x0) + FUp (x0), x〉
)T
≤ 0. (3)

Suppose on contrary x0 /∈ Min(F(F (.)−F (x0)), P ),
then there exists ā such that F(Fk(a) − Fk(x0) ≺LU

F(Fk(x
0)−Fk(x0) = 0, ∀k = 1, · · · , p. This follows

that
Fk(a) ≺LU Fk(x0) ∀k = 1, · · · , p,

which is contradiction to the supposition. This com-
pletes the proof.

�

The following necessary optimality conditions for
multiobjective optimization problem for local efficient
solution of (MOP ) to be a Approximate-Karush-
Kuhn-Tucker point will be helpful to develop the
proof.

Theorem 3.1 If x0 ∈ P is solution to the
V V I(F, P ), then x0 satisfies the AKKT − V V I −
IV OP conditions.

Proof: Since x0 is local solution of V V I(F, P ), so
by Lemma 3.1, there exists δ > 0, such that x0 ∈
Min {F(F (·) − F (x0)), P ∩ B̄(x0, δ)}, F (x) =
[FL(x), FU (x)].
Suppose x0 is unique solution of the problem

Min F(F (x)− F (x0)) +
1

2
‖x− x0‖2,

subject to x ∈ P ∩ B̄(x0, δ),

where F (x) = [FL(x), FU (x)]. (4)

We define the following function:

ϕk(x) = F(F (x)− F (x0)) +
1

2
‖x− x0‖2+

k

 m∑
j=1

gj(x)2+ +

r∑
l=1

[hl(x)]2

 ,

for all k > 0, and k →∞. (5)

Let xk be a solution of the problem

Min ϕk(x), subject to ‖x− x0‖ ≤ δ. (6)

By the convergence property of penalty methods [15],
we have

F(F (xk)− F (x0)) +
1

2
‖xk − x0‖2+

k
{ m∑
j=1

gj(x)2+ +

r∑
l=1

[hl(x
k)]2
}

≤ F(F (x0)− F (x0))

that is,

F(F (xk)− F (x0)) +
1

2
‖xk − x0‖2+

k
{ m∑
j=1

gj(x)2+ +

r∑
l=1

[hl(x
k)]2
}
≤ 0.
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Suppose that µkj = (kgj(x
k))+ ≥ 0 and τkl =

khl(x
k), then we have

F(F (xk)− F (x0)) +
1

2
‖xk − x0‖2

+
m∑
j=1

|µkj gj(xk)+|+
r∑
l=1

|τkl hl(xk)| ≤ 0. (7)

By the convergence property of exact penalty
methods [15], taking the limk→∞ x

k = x0, k → ∞
and by the continuity of F, we have

lim
xk→x0

[1

2
‖xk − x0‖2 +

m∑
j=1

|µkj gj(xk)+|

+

r∑
l=1

|τkl hl(xk)|
]

= 0.

In (6) we observe that xk exists because ϕk(x) is con-
tinuous and B̄(x0, δ) is compact. Let z be a limit point
of xk.We assume that xk → z. From the problem (5),
we have

F(F (xk)− F (x0)) ≤ ϕk(xk),

because of

ϕk(x
k)− F(F (xk)− F (x0)) =

1

2
‖xk−x0‖2+k

{ m∑
j=1

gj(x)2++
r∑
l=1

[hl(x
k)]2
}
≥ 0.

Since x∗ is a feasible solution of the problem (4) and
xk is the solution of problem (6), we have

ϕk(x
k) �LU ϕk(x0) = 0. (8)

We claim that z is a feasible solution of the Problem
(4). Since ‖xk − x0‖ ≤ δ, therefore ‖z − x0‖ < δ,
suppose if possible

m∑
j=1

(gj(z)+)2 +
r∑
l=1

h2l (z) > 0,

then, there exists c > 0, such that

m∑
j=1

(gj(x
k)+)2 +

r∑
l=1

h2l (x
k) > c,

for sufficiently large k.

From continuity of F and xk → z, we have

ϕk(x) = F(F (x)− F (x0)) +
1

2
‖x− x0‖2

+ k
{ m∑
j=1

gj(x
k)2+ +

r∑
l=1

[hl(x)]2
}

�LU F(F (x)− F (x0)) + kc.

Taking the limit k →∞, we obtain ϕk(xk) −→ +∞,

which contradicts (8). Consequently,
m∑
j=1

(gj(z)+)2 +

r∑
l=1

h2l (z) = 0, that is, z ∈ P ∩ B̄(x0, δ), therefore

from (7), we obtain

ϕk(x
k) = F(F (xk)− F (x0)) +

1

2
‖xk − x0‖2

+ k
{ m∑
j=1

gj(z)+)2 +
r∑
l=1

[hl(x
k)]2
}
≤ 0,

as k −→ +∞. (9)

Since k{
∑m

j=1 gj(z)+)2+
∑r

l=1[hl(x)]2} ≥ 0, there-
fore from (9), we have F(F (xk)− F (x0)) + 1

2‖x
k −

x0‖2 ≤ 0. As x0 is a unique solution of the problem
(4), we conclude that z = x0. Therefore, xk −→ x0

and ‖xk − x0‖ < δ for all k sufficiently large. As
xk is a solution of the nonsmooth problem (6) and
it is an interior point of the feasible set, for suffi-
ciently large k, from Proposition 2.3, it follows that
0 ∈ ∂cϕρk(xk). Then, we have

0 ∈ conv(

p⋃
i=1

{Fi(x0)}) + (xk − x0)

+
m∑
j=1

kgj(x
k)+∇gj(xk) +

r∑
l=1

khl(x
k)∇hl(xk).

(10)

Hence, there exists λki ≥ 0, i = 1, 2, ..., p, such that
p∑
i=1

λki = 1 and as kgj(xk)+ = µkj , khl(x
k) = τkl ,

then from (10), we get

p∑
i=1

λL,ki FLi (xk) +

p∑
i=1

λL,ki FUi (xk)

+

m∑
j=1

µkj∇gj(xk)+
r∑
l=1

τkl ∇hl(xk) = x0−xk → 0,

as xk −→ x0 and Fi(xk)→ Fi(x
0).
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�

We established sufficient optimality conditions
for the V V I − IV OP problem.

Theorem 3.2 Suppose
〈Fi(x0), x〉; where each Fi(x0) =
[FLi (x0), FUi (x0)], i = 1, · · · , p are LU-convex,
gj ; j = 1, · · · ,m are convex and hi; i = 1, · · · , r are
affine. If x0 ∈ P satisfies theAKKT−V V I−IV OP
conditions, then x0 is a weak efficient solution of
V V I − IV OP.

Proof: Let x0 be not a weakly efficient solution then,
there exists x̄ ∈ P such that

〈Fi(x0), x̄〉 ≺LU 〈Fi(x0), x0〉, i = 1, 2, ..., p. (11)

Let (xk) and (λL,k, λU,kµk) be the sequences that sat-
isfies the AKKT − V V I − IV OP at x0. There-
fore, without loss of generality we may assume that
λL,k → λL,0, λU,k → λU,0 with λL,0 ≥ 0, λU,0 ≥ 0

and
p∑
i=1

λL,0i = 1,
p∑
i=1

λU,0i = 1. As 〈Fi(x0), x〉, are

LU-convex, gj are convex and hl are affine, for all k
we get

〈Fi(x0), xk〉+ 〈Fi(xk), x̄− xk〉 �LU
〈Fi(x0), x̄〉, ∀ i = 1, ..., p, (12)

gj(x̄) ≥ gj(xk) + 〈∇gj(xk), x̄− xk〉,∀ j = 1, ...,m,
(13)

hl(x̄) = hl(x
k) + 〈∇hl(xk), x̄− xk〉,∀ l = 1, ...,m.

(14)
Since x̄ is feasible point, therefore we can write

p∑
i=1

λL,ki 〈F
L
i (x0), x̄〉+

p∑
i=1

λU,ki 〈F
U
i (x0), x̄〉

+

m∑
j=1

µkj gj(x̄) +

r∑
l=1

τkl hl(x̄)

�LU
p∑
i=1

λL,ki 〈F
L
i (x0), x̄〉+

p∑
i=1

λU,ki 〈F
U
i (x0), x̄〉.

(15)

From (12), (13), (14) and (15), we get

p∑
i=1

λL,ki 〈F
L
i (x0), xk〉+

p∑
i=1

λU,ki 〈F
U
i (x0), xk〉+

m∑
j=1

µkj gj(x
k) +

r∑
l=1

τkl hl(x
k)

+
〈 p∑
i=1

λL,ki FLi (x0) + 〈
p∑
i=1

λU,ki FUi (x0)

+
m∑
j=1

µkj∇gj(xk) +
r∑
l=1

τkl ∇hl(xk), x̄− xk
〉

�LU
p∑
i=1

λL,ki 〈F
L
i (x0), x̄〉+

p∑
i=1

λU,ki 〈F
U
i (x0), x̄〉.

(16)

Using (A1)− (A3) in above inequality, we get

p∑
i=1

λL,ki 〈F
L
i (x0), x0〉+

p∑
i=1

λU,ki 〈F
U
i (x0), x0〉

�LU
p∑
i=1

λL,ki 〈F
L
i (x0) +

p∑
i=1

λL,ki 〈F
L
i (x0), x̄〉,

since Fi(x
k)→ Fi(x

0) as xk → x0.

Which is a contradiction to (11). This completes the
proof.

�

The AKKT conditions are stronger than KKT con-
ditions in case of interval valued optimization. Here
is an example of interval valued optimization problem
which does not satisfy KKT conditions but satisfy
AKKT conditions.

Example 3.1 Consider the following interval valued
optimization problem:

minφ(x) = [x+ 1, x+ 2]

subject to 1 + x2 = 0.

Example 3.2 Consider the following interval valued
optimization problem:

Min φ(x1, x2) = (φ1(x1, x2), φ2(x1, x2))

subject to h(x1, x2) = x2 − x1 = 0,

and g(x1, x2) = x21 − x2 ≤ 0,

where φ(x1, x2) = ([x1 − x22 + 1, x1 − x22 + 2],

[x1 − x2 + 1, x1 − x2 + 2]).

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2020.19.28

Kin Keung Lai, Sanjeev Kumar Singh, 
Shashi Kant Mishra

E-ISSN: 2224-2880 286 Volume 19, 2020



The point x0 = (1, 1) is a weak efficient solution of
the above problem. In order to find sequences satis-
fying the conditions (A1), (A2) and (A3), we solve the
equation

λL1

[
1
−2x2

]
+ λL2

[
1
−1

]
+ λU1

[
1
−2x2

]
+ λU2

[
1
−1

]
+ µ1∇h(x1, x2) + µ2∇g(x1, x2) = (0, 0).

Consider the sequence xk = (1 + 1
k , 1 + 1

k ), k ∈ N,
then
λL,k1 = { 1

24 + 1
k}, λ

L,k
2 = {1924 + 1

k}, λ
U,k
1 = { 1

12 +
1
k}, λ

U,k
2 = { 1

12 + 1
k},

µk1 = {54 + 1
k}, µ

k
2 = {18 + 1

k}.
Then we get

lim
k→∞

λL,k1 ∇φ
L
1 (xk1, x

k
2) + λL,k2 ∇φ

L
2 (xk1, x

k
2)

+ λU,k1 ∇φ
U
1 (xk1, x

k
2) + λU,k2 ∇φ

U
2 (xk1, x

k
2)

+ µk1∇h(xk1, x
k
2) + µk2∇g(xk1, x

k
2) = (0, 0),

p∑
i=1

λL,ki +

p∑
i=1

λU,ki = 1,

µk1h(xk) = (
5

4
+

1

k
)× (1 +

1

k
− 1− 1

k
)→ 0,

µk2g(xk) = (
1

8
+

1

k
)× ((1 +

1

k
)2 − 1− 1

k
)→ 0.

Hence, AKKT − IV OP conditions are satisfied at
x0 = (1, 1).

Example 3.3 Consider the following multiobjective
optimization problem:

Min φ(x1, x2) = (φ1(x1, x2), φ2(x1, x2))

subject to h(x1, x2) = 1− x1 − x2 = 0,

and g(x1, x2) = 2x1 − x22 + 1 ≤ 0,

where φ(x1, x2) = ([x2 − x21,−x2 − 2x21],

[x2 − x1, x1 − x2 + 1]).

The point x0 = (0, 1) is a weak efficient solution of
the above problem. In order to find sequences satis-
fying the conditions (A1), (A2) and (A3), we solve the

equation

λL1

[
−2x1

1

]
+ λL2

[
−1
1

]
+ λU1

[
−4x1
−1

]
+ λU2

[
−1
1

]
+ µ1

[
−1
−1

]
+ µ2

[
2
−2x2

]
= (0, 0).

Consider the sequence xk = ( 1k , 1 + 1
k ), k ∈ N, then

λL,k1 = { 1
48 + 1

k}, λ
L,k
2 = {4348 + 1

k}, λ
U,k
1 = { 1

24 +
1
k}, λ

U,k
2 = { 1

24 + 1
k},

µk1 = {8596 + 1
k}, µ

k
2 = { 1

64 + 1
k}.

Then we get

lim
k→∞

λL,k1 ∇φ
L
1 (xk1, x

k
2) + λL,k2 ∇φ

L
2 (xk1, x

k
2)

+ λU,k1 ∇φ
U
1 (xk1, x

k
2) + λU,k2 ∇φ

U
2 (xk1, x

k
2)

+ µk1∇h(xk1, x
k
2) + µk2∇g(xk1, x

k
2) = (0, 0),

p∑
i=1

λL,ki +

p∑
i=1

λU,ki = 1,

µk1h(xk) = (
85

96
+

1

k
)× (1 +

1

k
− 1− 1

k
)→ 0,

µk2g(xk) = (
1

64
+

1

k
)× ((1 +

1

k
)2 − 1− 1

k
)→ 0.

Hence, AKKT − IV OP conditions are satisfied at
x0 = (0, 1).

4 Conclusions

In this paper, we have studied the Approximate-
Karush-Kuhn-Tucker(AKKT ) optimality conditions
for interval valued optimization problem. We have
provided an example which tells that AKKT condi-
tions are stronger than KKT conditions. Further, we
provided two more examples in the support of our the-
ory. The further extension of this theory is possible in
case of more generalized sequential optimality condi-
tions namely, Complementary Approximate-Karush-
Kuhn-Tucker(CAKKT ) optimality conditions [16].
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